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Introduction

Cloud-native application development has become mainstream with the 

convergence of maturing technologies, like infrastructure-as-code (IaC), 

software-defined cloud computing (SDCC), hyperscale enterprise cloud container 

platforms, and the widespread adoption of DevOps practices (such as continuous 

deployment) all of which have led to the agile transformation of information 

technology (IT) and business. 

Distributed cloud-native applications leverage the core principles of cloud computing for resilience, scalability, 
availability and operational efficiency. By leveraging an architectural paradigm called microservices, application 
monoliths can be broken down into functional, distributed components that offset development complexity. 
However, distributed microservices can pose significant challenges to testing and validating applications against 
stated objectives.

This white paper shares our experience in developing new approaches, methodologies and tooling, including a 
new microservices testing workbench, for functional testing of modern, cloud-native microservices at scale.
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To achieve maximum efficiency in the development 
cycle, as well as scale and reliability in deployment 
and operations, modern applications are often broken 
down into microservices, which typically comprise 
a single business function. These can be developed, 
deployed and scaled independently of one another, 
communicating with each other via application 
programming interfaces (APIs). 

The most common implementation of the 
microservices pattern is on containers running on 
the Kubernetes orchestration platform. However, 
an important and often overlooked aspect of 
microservices is that this architecture trades 
development complexity for operational 
complexity, meaning that instead of a single 
monolithic image, an application may be comprised 
of many components distributed across many 
processes and servers. 

Container-based, cloud-native applications have 
become the standard for building distributed 
applications that can be automated via cloud-native 
platforms. In this paper, we focus on a particular 
aspect of cloud-native systems that’s often viewed as 
a lower priority: testing. 

Quality engineering and testing of a cloud-native 
application based on microservices requires a 
different strategy than those used for monolithic 
applications. Traditional software testing is often 
described by a “test pyramid” (first shown by Mike 
Cohn in the book Succeeding with Agile). 

Microservices can be a means of realizing 
domain-driven design (DDD), an approach to 
modeling real-world entities as problem domains. 
Independent problem areas are referred to as 
bounded contexts and each bounded context 
correlates to a single microservice. For example, 
an eCommerce application can be composed of 
a shopping cart, catalog, logistics and payment 
functions, each of which could be a microservice.

However, testing a cloud-native system requires that 
we evolve the test pyramid. In a distributed system, 
functional testing of microservices in isolation must 
also include API testing to ensure that interfaces 
function correctly, as well as integration testing to test 
how the microservices function together. 

Cloud-Native Software Development

U I 
T E S T S

S E RV I C E  T E S T S

U N I T  T E S T S

In contrast to traditional models of software, cloud-native applications specifically 

target and take advantage of cloud features, such as scale and resiliency. 

T R A D I T I O N A L  T E S T  P Y R A M I D
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Unlike a monolithic application running as a single 
process, where components invoke one another using 
language-level methods or function calls, the biggest 
challenge in microservices with loose coupling 
of business logic across different processes is the 
communication mechanism. A direct migration to 
microservices through remote procedure calls (RPCs) 
would make it “very chatty,” making the systems 
less reliable should any of the processes fail. In this 
case, it is synchronous communication between the 
different segregated responsibilities that is not  
clearly scalable. 

Moreover, because transactions may involve many 
microservices operating across many servers or 
even regions, traditional transaction management 

and rollback may not be feasible. Instead, such 
systems rely on eventual (rather than near real-time) 
consistency and compensating transactions to restore 
state in the event of failure. 

“By 2025, cloud-native platforms will serve as 
the foundation for more than 95% of new digital 
initiatives — up from less than 40% in 2021.” 

Source: Gartner®, Top Strategic Technology Trends for 2022: Cloud-Native 
Platforms, Dennis Smith, Michael Warrilow, Arun Chandrasekaran, Anne 
Thomas, Sid Nag, David Smith, 18 October 2021. GARTNER is a registered 
trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. 
and internationally and is used herein with permission. All rights reserved.

 
The following figure shows some common challenges 
when a monolithic application is broken down into a  
system of microservices.

Cloud-Native Software Development

M O N O L I T H  T O  M I C R O S E RV I C E S

• Decomposed large applications
• Autonomous modules
• Independently deployable
• Lightweight intercommunication

Container Managed

Mocked Microservice

T E S T I N G C H A LLE N G E S

• Distributed transactions: Eventual 
consistency (compensating 
transactions, not rollback)

• Horizontal scaling: Distributed 
database per service

• End-to-end testing (testing that 
launch multiple services): Difficult, 
slow, brittle and expensive

• Testing in isolation: Though 
inevitable, may pass but could fail 
in production due to resource-
constrained scaling by design

API 
GATEWAY
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Testing Strategy

T E S T I N G  O F  M I C R O S E R V I C E S  I N  I S O L A T I O N

The distributed nature of the microservices requires 
implementing test practices earlier in development. 
As the complexity of a fully packaged application 
increases, so does the difficulty and risk profile of the 
application. Fortunately, the democratization of using 
cloud infrastructure for development and test gives us 

the opportunity to test the applications earlier in the 
development cycle. 

The figure below illustrates a reconfiguration of the 
monolithic test pyramid to a structure organized by 
service layers for microservices.

As mentioned, loosely coupled microservices are an 
architectural pattern that, correctly implemented, 
enable scale and resilience in cloud applications. 
However, the distribution of multiple cooperating 
code components introduces an additional level of 
complexity to the system – the use of inter-process 
communication (IPC) mechanisms to connect the 
distributed microservices. While there are numerous 
choices for IPC (REST, WebSocket, etc.), common 
among them is the presence of a contract between 
any two services. Contracts, or API documentation, 
describe endpoints, parameters, and normal and error 

responses. Adhering to the contracts allows teams to 
develop microservices independently.

APIs can be used in several different ways, ranging 
from synchronous request response to publish-and-
subscribe metaphors, such as those used in Kafka. 
Regardless of the design approach, the primary 
goal when testing microservices is to ensure those 
contracts are well defined and stable at any point in 
time. In a test-first, top-down approach, these are the 
first tests to be covered. A fundamental integration 
test ensures that the consumer has quick feedback 

MONOLITHIC MICROSERVICES

D E C O M P O S I T I O N  O F  T E S T  P Y R A M I D
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Testing Strategy
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as soon as a client does not match the real state of 
the producer to whom it is talking. These tests should 
be part of the regular deployment pipeline. Their 
failure would inform the consumers that a change on 
the producer side has occurred, and that responsive 
changes are required to achieve consistency again. 
Without the need to write intricate end-to-end tests, 
“consumer-driven contract testing” would target this 
use case. 

In effect, it is about establishing what the consumer 
expects to receive and verifying that the producer 
is indeed sending the expected responses, both 
the format and data contents. One of the popular 
libraries that supports this type of testing is PactJS 
library, a JavaScript version of the open source PACT 
microservices testing package. 

The flow has two distinct parts – “Play & Record” 
and “Replay & Verify.” As seen in the figure below, by 
using PACT, the mock provider and mock consumer 
behaviors are run as a local service. A PACT broker 
exposes a representational state transfer (REST) API 
for publishing and retrieving PACTs. If the PACT unit 
tests are correct, then a JSON PACT file is generated. 
This is then shared with the team developing  
the provider.

Once instrumented, these tests can be added to 
continuous integration automation. As we navigate 
through the services layers, the focus will shift toward 
the integration testing of components from other 
domains and how the external services can  
be validated.
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Testing Strategy

trace

The complexity of testing microservices increases with 
the different patterns of microservice deployment (for 
example, API management layers or message buses) 
that are used to scale them across process and server 
boundaries. While the approach to testing them in 
isolation helped us to understand the individual 
service better, debugging and understanding the root 
cause of a problem faced in a real-world distributed 
deployment requires tracing requests across 
bounded contexts (process, server, etc.). 

In monolithic architecture, call stacks were used for 
analyzing the flow of execution (Service A->B->C), as 
they were running in a single process. But challenges 
arise in the microservices world as the service calls 
are made beyond the process boundary. Distributed 
tracing provides the answer for the cloud and 
microservice architecture.

Debugging and observing distributed transactions in 
a microservices implementation is harder without a 
distributed tracing framework, as there are no in-
memory calls or stack traces to do so. Distributed 
tracing, also called distributed request tracing, is a 
method used to profile and monitor applications, 
especially those built using a microservices 

architecture. Distributed tracing helps identify where 
failures occur and what causes poor performance. 

Distributed tracing requires developers to explicitly 
add instrumentation code into the application 
to work. One business transaction might involve 
multiple combinations of protocols and technologies. 
While the distributed computing lends itself well to 
the design goal of isolating failure, it adds significant 
complexity to debug, trace and fix the failures. 

“As Twitter has moved from a monolithic to a 
distributed architecture, our scalability has 
increased dramatically. Because of this, the overall 
complexity of systems and their interactions has 
also escalated. This decomposition has led to 
Twitter managing hundreds of services across 
our datacenters. Visibility into the health and 
performance of our diverse service topology 
has become an important driver for quickly 
determining the root cause of issues, as well 
as increasing Twitter’s overall reliability and 
efficiency. Debugging a complex program might 
involve instrumenting certain code paths or 
running special utilities; similarly, Twitter needs 
a way to perform this sort of debugging for its 
distributed systems.”

Source: https://tinyurl.com/2p9fpp4f

S C A L I N G  M I C R O S E R V I C E S

E X A M P L E  O F  A  T R A C E

/orders

auth

Cache.Get

dB.Query

Cache.Put

https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html
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Testing Strategy

In a microservices-based architecture, many services 
might be evolving independently at the same time, 
and often rapidly. Done correctly, microservices 
thus allow development teams to build and deploy 
independently of one another, making it possible to 
respond to business needs more quickly.

However, they must be independently releasable and 
in an isolated way, meaning that the release is not 
orchestrated between services. 

While providing new levels of agility, this approach 
raises another concern: can we verify that a new 
service (or a new version of the service) does not 
break anything in the current application? 

In addition to the ability to trace requests, monitor 
logs and checking the network configuration, such 
as routing tables, network address translation (NAT) 
and proxy settings, testing of different versions of 
microservices that are deployed can be based on the 
contract changes of the microservices. 

T A P  T E S T I N G  I N  B L U E / G R E E N  O R  C A N A R Y  D E P L O Y M E N T S

Differencia 

Comparison

Existing one in production (primary) 

New version (canary)

MICROSERVICE V1

MICROSERVICE V2

“State”: “KY”{

“StateCode”: “KY”{ }

}

C O M PA R E  S E RV I C E S  I N  P R O D U C T I O N  ( C A N A RY )

Often, these request tracing capabilities of a service 
mesh are integrated with instrumentation libraries, 
like OpenCensus or OpenTracing. Testing the services 
requires the ability to tie together the entire trace, 
which requires the application to propagate request-
specific tracking information in the headers between 
services using the span. A span is each unit of work in 
a trace, the different spans represent internal requests 
that are made to process the top-level request for 
“orders,” for example. The authorization check is 
followed by the availability of the information in the 
cache and a database query (in this event there is a 
miss in the cache and must be reloaded).

Open instrumentation libraries, such as OpenTracing, 
enable microservices to be instrumented using API 
calls from within the application, helping testers 
describe and analyze cross-process transactions. 
These enable anomaly detection, help diagnose 
steady state problems, and provide distributed 
profiling, resource attribution and workload modeling 
of microservices. When these implementations report 
to backend systems, like Elasticsearch, visualization 
of request traces using Kibana, or similar visualization 
and exploration tools, provide contextual information 
to diagnose issues within the system. 
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Testing Strategy

This type of testing is very useful in blue/green 
deployment and can be applied to testing in 
production. In fact, tap compare testing assesses 
an environment without developing test scripts. It 
requires an automated design to fetch production 
requests. Then, it is ready to sample real production 
requests by sending the fetched requests to a canary 
or blue/green production environment, not servicing 
production traffic.

Diferencia, an open source application, is one such 
tool that can be used as shown above. Diferencia 
acts as a proxy, with each request being multi-casted 
to multiple versions of running services. When the 
response from each of the services is returned, it 
then compares the responses and checks if they 
are “similar.” If after repeating this operation with a 
representative amount of different requests, and all 
(or most) of them are “similar,” then a new service can 
be considered regression-free. 

When using Kubernetes, a canary deployment can tap 
the ingress controller configuration to assign specified 

percentages of traffic requests to the stable and 
canary deployments. Combined with a solution like 
flagr, that supports dark launching, it can route traffic 
upon inspection of the request packet to identify 
which flag variant to apply for the request context. 

Other tools like flagger (not to be confused with flagr) 
provide additional capabilities around the closed 
control-loop, that give dynamic routing capabilities 
based on key performance measurements, such as 
request success rate, request average duration and 
health of the pods, posing further challenges. 

Adapting the test strategy – based on the 
implementation pattern and deployment 
configuration – needs a test instrumentation set that 
can validate the configurations and routing rules. The 
adoption of a tester’s workbench, which models the 
traffic patterns, usage and deployment configurations 
to manage testing of roll-out flags in a distributed 
architecture for system validation is essential, as the 
traffic is now dynamic and policy-based. 

A critical element for scaling out microservices is the adoption of an asynchronous 

messaging queue to implement publish-and-subscribe semantics, such as Kafka, 

in a distributed system architecture involving microservices. 

A pattern that has found wide adoption is the 
smart endpoints dumb pipes paradigm,1 in which 
the message bus is responsible for delivering the 
message, but the endpoint (API) must intelligently 
interpret it. Typically, in reactive systems, events 
are a record of what happens to an entity and 
microservices push them into a durable storage, such 

as an event log or event queue for other microservices 
to consume. This then becomes the history that a 
service can rely on to replay in order to recover like 
a state machine. One challenge is accepting the fact 
that when a state changes, it can take an inordinate 
amount of time before entities see the change.

E V E N T - D R I V E N  R E A C T I V E  M I C R O S E R V I C E S

1 https://medium.com/@nathankpeck/microservice-principles-smart-endpoints-and-dumb-pipes-5691d410700f

https://lordofthejars.github.io/diferencia-docs-site/diferencia/0.6.0/index.html
https://flagger.app/
https://medium.com/@nathankpeck/microservice-principles-smart-endpoints-and-dumb-pipes-5691d410700f


Testing Strategy

The complexity of testing these architectures for resilience, fault-tolerance 

and consistency increases with this implementation. Testing microservices 

in these instances can leverage the loosely coupled services’ integration 

approach by injecting messages that are pertinent (subscribed to) for the 

microservice under test.

An interesting set of cases involves the way  
exceptions are handled when a business logic 
violation is encountered. Because of the distributed 
and asynchronous nature of the microservices, a 
set of compensatory transactions must be triggered 
to revert the ongoing transaction that was being 
processed but failed. A verification of the eventual 
consistency of the transactional unit must be 
confirmed via the query API of each microservices 
chain involved in the transaction. This is particularly 

important because a compensating transaction 
doesn’t necessarily return the data in the system  
to the state it was in at the start of the original 
operation. Instead, it compensates for the work 
performed by the steps that were completed 
successfully before the operation failed. Validating 
this requires visibility into the sequence of calls 
through distributed tracing – and reconstruction of 
the event logs for processing the application state – 
before the transaction was initiated.
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A XO N  P R O V I D E S  T H E  F O U N D AT I O N  F O R  B U I L D I N G  A S Y N C H R O N O U S , 
M E S S A G E-D R I V E N  S Y S T E M S  B A S E D  O N  T H E  C O N C E P T S  O F:

In one use case, EPAM engineers used about 300 tests, which took about four to 

five working days of effort to assess a microservice architected implementation. 

Through the automation of event-layer orchestration and using mock producer 

and consumer objects to test the microservices in isolation, the testing coverage 

improved significantly. 

This enabled contract-based testing of the microservices while reducing the testing effort to just a few hours. 

The consumer-driven contract testing provided the higher coverage needed to increase confidence about the 
development process. In this engagement, Axon, an open source microservices building framework, was used in 
conjunction with Kafka event bus.

Caselet

EVENT_ID + TOPIC  

+ MESSAGE
POJO CL ASS

Axon topic
(Mock Generator)

Publish
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Subscribe
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dB
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T E S T I N G  M I C R O S E RV I C E S  I N  I S O L AT I O N

MICROSERVICES EV ENT  S OURCIN G
COMMAND QUERY 
RESPONSIBIL ITY  

SEGREGATION ( CQRS )

D OMA IN-D RIV EN  
D ES IGN (D D D ),  
EV ENT-D RIV EN 
A RC H IT ECT URE
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Caselet

The framework uses an architecture that advocates the design and 

development of applications by treating it as a “system of events,” rather 

than as a “system of state.” 

One of the benefits of CQRS, and especially that of 
event sourcing, is that it is possible to express tests 
for events and commands. 

The fixtures provided by an Axon framework work 
with any testing framework, such as JUnit or TestNG. 
By using a fluent interface, optimal expression and 
use of the stages of configuration, execution and 
validation can be achieved using the “given-when-
then” construct.

Sagas can dispatch commands using a callback to be 
notified of command processing results. 

Often, sagas will interact with resources. These 
resources are not part of the saga or its state but 
are injected after a saga is loaded or created. The 
Axon test fixtures use this capability to allow for the 
registration of resources that need to be injected into 
the saga. A useful approach is to inject mock objects, 
using tools such as Mockito or EasyMock, into a saga. 
Mock objects allow for verification that the saga 
interacts correctly with external resources.

Command gateways provide sagas with an easier way 
to dispatch commands. Using a custom command 
gateway also makes it easier to create a mock or 
stub to define its behavior in tests. However, when 
providing a mock or stub, the actual command might 
not be dispatched, making it impossible to verify 

the sent commands in the test fixture. The fixture 
was used to provide two methods that allow for the 
registration of command gateways and, optionally, a 
mock defining its behavior. 

The test fixture also can timestamp events from the 
moment the fixture was created because, by default, 
the test fixture tries to eliminate elapsing system time, 
where possible, to make predicting what time events 
are scheduled for publication easier. If a test case 
verifies that an event is scheduled for publication 
in 30 seconds, it will remain 30 seconds, regardless 
of the time taken between actual scheduling 
and test execution. Finally, the Axon framework 
provides capabilities to tune the performance for 
Axon applications. This includes capabilities to take 
event snapshots/segment tuning. We then use these 
capabilities to customize the test strategy, one that 
leverages the architectural patterns for efficiency, 
speed and one that is fit-for-purpose.

https://microservices.io/patterns/data/saga.html


Continuous testing is an extremely important part of a cloud-native application 

pipeline, as it helps to ensure the product is of an expected quality at every stage  

of the pipeline. Our test workbench can accelerate instrumentation, orchestration 

and testing of cloud-native microservices for availability and resiliency by 

inducing network faults and pod disruptions, to provide clear actionable insights 

and design considerations. 

Continuously testing microservices entails engaging tasks and activities at each step in the development and 
deployment cycle. The test workbench provides an ecosystem of tools to evaluate independent architectural 
components for resiliency, elasticity, functional correctness and performance in isolation.

The platform can also provide monitoring and trace information using pre-configured tools, such as Prometheus, 
Grafana and OpenTracing. The developer can also use the platform to shorten the feedback loop with real-time 
insights for quick and early remediation. The advantage of a built-in, cloud-native test instrumentation is the 
ability to automate test vectors that can be configured to process logs, trace requests and monitor containers 
using best-fit tools directly at the source. This also addresses any data residency and privacy considerations.

Continuous Testing of Microservices with Our Test Workbench

INTEGRATES SEAMLESSLY WITH A DISTR IB UT ED 
APPLICATION ARCHITECTURE  TO INJECT,  TRACE 
AND REPORT ON DATA THROUGH THE DIF F E R E N T 
PARTS OF THE SYSTEM.

PROVIDES ISOLATED SERVICES FOR TEST ING-
SPECIFIC CONTRACTS  (FORMAT AND DATA 
TYPES)  FOR FUNCTIONAL VALIDATION.

T ESTS  T H E RES IL IENCY  OF  T H E SYST EM  BY 
IN J E CTIN G  FAU LT TO S IM U L ATE  AVA IL A BI LI TY I SSUES; 
DE TE CTS  TOL E RA N CE  TH R E S H OL DS  A N D RECOVERY 
TH R OU G H  E V E N TUA L  TRA N S ACTION A L  CONSI ST ENCY.

LOC A L IZES  AND  ID ENT IF IES  PERFORMAN CE 
B OT T L ENEC KS  A N D L ATE N CY  ISS U E S  CAUSED BY 
DISTR IBU TE D A N D A SY M M E TR IC S CA L IN G OF PARTS 
OF  TH E  SYSTE M .

1 3

2 4

O U R  T E S T  W O R K B E N C H  E N H A N C E S  T H E  T E S T  E F F O R T 
V I A  T H E  F O L L O W I N G  C A PA B I L I T I E S :
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Conclusion

Testing cloud-native applications involving microservices require bespoke 

solutions to address specific architectural patterns and implementations. To 

quickly address the specific challenges posed by the implementation, testers  

need to have the relevant skills, knowledge and cloud-native tools to help  

facilitate the appropriate tests.

There are risks and challenges associated with cloud-native microservices architectures. The test workbench 
seamlessly integrates with the various cloud providers to quickly configure the required tools, reducing the time to 
design, test and validate business objectives. The cloud-native test strategy includes:

4UNDERSTANDING THE DOMAIN 
DECOMPOSITION AND ASSOCIATED 

BUSINESS WORKFLOWS.

A TESTER WORKBENCH THAT PROVIDES 
OUT-OF-THE-BOX CAPABILITIES FOR  

END-TO-END TEST MANAGEMENT.

ASSEMBLING THE RIGHT TOOLS TO INSTRUMENT 
FOR OBSERVABILITY, TRACING, CONTRACTS 

TESTING AND VALIDATION IN THE CLOUD.

1

3
B LUEPRINTS  A ND  S OLUT IONS  TO ONB OAR D 

A PPL IC AT ION PAY LOAD  US ING D IV ERSE 
C LOUD  S ERV IC ES  FOR VA L IDAT ION.

4

AUTOMAT ION REC IPES  FOR ACC EL ERAT ED , 
MULTI-LAY ER T EST ING A ND  A NA LYS IS  OF 

APPL IC AT ION ASS ESS MENT.

5

2
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