
W H I T E P A P E R

Cloud-Native Microservices Testing:

De-Risking Application Failures

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 2

Contents

INTRODUCTION 3

CLOUD-NATIVE SOFTWARE DEVELOPMENT 4

TESTING STRATEGY 6

Testing of Microservices in Isolation 6

Scaling Microservices 8

Tap Testing in Blue/Green or Canary Deployments 9

Event-Driven Reactive Microservices 10

CASELET 12

CONTINUOUS TESTING OF MICROSERVICES WITH OUR TEST WORKBENCH 14

CONCLUSION 15

ABOUT THE AUTHORS 16

Introduction

Cloud-native application development has become mainstream with the

convergence of maturing technologies, like infrastructure-as-code (IaC),

software-defined cloud computing (SDCC), hyperscale enterprise cloud container

platforms, and the widespread adoption of DevOps practices (such as continuous

deployment) all of which have led to the agile transformation of information

technology (IT) and business.

Distributed cloud-native applications leverage the core principles of cloud computing for resilience, scalability,
availability and operational efficiency. By leveraging an architectural paradigm called microservices, application
monoliths can be broken down into functional, distributed components that offset development complexity.
However, distributed microservices can pose significant challenges to testing and validating applications against
stated objectives.

This white paper shares our experience in developing new approaches, methodologies and tooling, including a
new microservices testing workbench, for functional testing of modern, cloud-native microservices at scale.

A P R I L 2 0 2 2 • 3W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 4

To achieve maximum efficiency in the development
cycle, as well as scale and reliability in deployment
and operations, modern applications are often broken
down into microservices, which typically comprise
a single business function. These can be developed,
deployed and scaled independently of one another,
communicating with each other via application
programming interfaces (APIs).

The most common implementation of the
microservices pattern is on containers running on
the Kubernetes orchestration platform. However,
an important and often overlooked aspect of
microservices is that this architecture trades
development complexity for operational
complexity, meaning that instead of a single
monolithic image, an application may be comprised
of many components distributed across many
processes and servers.

Container-based, cloud-native applications have
become the standard for building distributed
applications that can be automated via cloud-native
platforms. In this paper, we focus on a particular
aspect of cloud-native systems that’s often viewed as
a lower priority: testing.

Quality engineering and testing of a cloud-native
application based on microservices requires a
different strategy than those used for monolithic
applications. Traditional software testing is often
described by a “test pyramid” (first shown by Mike
Cohn in the book Succeeding with Agile).

Microservices can be a means of realizing
domain-driven design (DDD), an approach to
modeling real-world entities as problem domains.
Independent problem areas are referred to as
bounded contexts and each bounded context
correlates to a single microservice. For example,
an eCommerce application can be composed of
a shopping cart, catalog, logistics and payment
functions, each of which could be a microservice.

However, testing a cloud-native system requires that
we evolve the test pyramid. In a distributed system,
functional testing of microservices in isolation must
also include API testing to ensure that interfaces
function correctly, as well as integration testing to test
how the microservices function together.

Cloud-Native Software Development

U I
T E S T S

S E RV I C E T E S T S

U N I T T E S T S

In contrast to traditional models of software, cloud-native applications specifically

target and take advantage of cloud features, such as scale and resiliency.

T R A D I T I O N A L T E S T P Y R A M I D

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 5

Unlike a monolithic application running as a single
process, where components invoke one another using
language-level methods or function calls, the biggest
challenge in microservices with loose coupling
of business logic across different processes is the
communication mechanism. A direct migration to
microservices through remote procedure calls (RPCs)
would make it “very chatty,” making the systems
less reliable should any of the processes fail. In this
case, it is synchronous communication between the
different segregated responsibilities that is not
clearly scalable.

Moreover, because transactions may involve many
microservices operating across many servers or
even regions, traditional transaction management

and rollback may not be feasible. Instead, such
systems rely on eventual (rather than near real-time)
consistency and compensating transactions to restore
state in the event of failure.

“By 2025, cloud-native platforms will serve as
the foundation for more than 95% of new digital
initiatives — up from less than 40% in 2021.”

Source: Gartner®, Top Strategic Technology Trends for 2022: Cloud-Native
Platforms, Dennis Smith, Michael Warrilow, Arun Chandrasekaran, Anne
Thomas, Sid Nag, David Smith, 18 October 2021. GARTNER is a registered
trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S.
and internationally and is used herein with permission. All rights reserved.

The following figure shows some common challenges
when a monolithic application is broken down into a
system of microservices.

Cloud-Native Software Development

M O N O L I T H T O M I C R O S E RV I C E S

• Decomposed large applications
• Autonomous modules
• Independently deployable
• Lightweight intercommunication

Container Managed

Mocked Microservice

T E S T I N G C H A LLE N G E S

• Distributed transactions: Eventual
consistency (compensating
transactions, not rollback)

• Horizontal scaling: Distributed
database per service

• End-to-end testing (testing that
launch multiple services): Difficult,
slow, brittle and expensive

• Testing in isolation: Though
inevitable, may pass but could fail
in production due to resource-
constrained scaling by design

API
GATEWAY

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 6

Testing Strategy

T E S T I N G O F M I C R O S E R V I C E S I N I S O L A T I O N

The distributed nature of the microservices requires
implementing test practices earlier in development.
As the complexity of a fully packaged application
increases, so does the difficulty and risk profile of the
application. Fortunately, the democratization of using
cloud infrastructure for development and test gives us

the opportunity to test the applications earlier in the
development cycle.

The figure below illustrates a reconfiguration of the
monolithic test pyramid to a structure organized by
service layers for microservices.

As mentioned, loosely coupled microservices are an
architectural pattern that, correctly implemented,
enable scale and resilience in cloud applications.
However, the distribution of multiple cooperating
code components introduces an additional level of
complexity to the system – the use of inter-process
communication (IPC) mechanisms to connect the
distributed microservices. While there are numerous
choices for IPC (REST, WebSocket, etc.), common
among them is the presence of a contract between
any two services. Contracts, or API documentation,
describe endpoints, parameters, and normal and error

responses. Adhering to the contracts allows teams to
develop microservices independently.

APIs can be used in several different ways, ranging
from synchronous request response to publish-and-
subscribe metaphors, such as those used in Kafka.
Regardless of the design approach, the primary
goal when testing microservices is to ensure those
contracts are well defined and stable at any point in
time. In a test-first, top-down approach, these are the
first tests to be covered. A fundamental integration
test ensures that the consumer has quick feedback

MONOLITHIC MICROSERVICES

D E C O M P O S I T I O N O F T E S T P Y R A M I D

MANUAL
EXPLORATORY

IN
T

E
G

R
A

T
IO

N
 T

E
S

T
IN

G

UNIT TESTS

API/COMPONENT
TESTS

API/
INTEGRATION

TESTS

UI
TESTS

SERVICE
A

UI

CONTRACT

ISOLATED

UNIT

SERVICE
B

CONTRACT

ISOLATED

MOCK

UNIT

SERVICE
UNDER

DEVELOPMENT

MOCK

MOCK

UNIT

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 7

Testing Strategy

P L AY & R E C O R D R E P L AY & V E R I F Y

C O N S U M E R-D R I V E N C O N T R A C T T E S T I N G S T E P S U S I N G PA C T

Co
ns

um
er

PACT
Unit
Test

Actual
Request

Minimal
Response

Mock
Provider

PACT
File

Share File

Pr
ov

id
er

Expected
Request

Actual
Response

PACT
File

Mock
Consumer API

as soon as a client does not match the real state of
the producer to whom it is talking. These tests should
be part of the regular deployment pipeline. Their
failure would inform the consumers that a change on
the producer side has occurred, and that responsive
changes are required to achieve consistency again.
Without the need to write intricate end-to-end tests,
“consumer-driven contract testing” would target this
use case.

In effect, it is about establishing what the consumer
expects to receive and verifying that the producer
is indeed sending the expected responses, both
the format and data contents. One of the popular
libraries that supports this type of testing is PactJS
library, a JavaScript version of the open source PACT
microservices testing package.

The flow has two distinct parts – “Play & Record”
and “Replay & Verify.” As seen in the figure below, by
using PACT, the mock provider and mock consumer
behaviors are run as a local service. A PACT broker
exposes a representational state transfer (REST) API
for publishing and retrieving PACTs. If the PACT unit
tests are correct, then a JSON PACT file is generated.
This is then shared with the team developing
the provider.

Once instrumented, these tests can be added to
continuous integration automation. As we navigate
through the services layers, the focus will shift toward
the integration testing of components from other
domains and how the external services can
be validated.

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 8

Testing Strategy

trace

The complexity of testing microservices increases with
the different patterns of microservice deployment (for
example, API management layers or message buses)
that are used to scale them across process and server
boundaries. While the approach to testing them in
isolation helped us to understand the individual
service better, debugging and understanding the root
cause of a problem faced in a real-world distributed
deployment requires tracing requests across
bounded contexts (process, server, etc.).

In monolithic architecture, call stacks were used for
analyzing the flow of execution (Service A->B->C), as
they were running in a single process. But challenges
arise in the microservices world as the service calls
are made beyond the process boundary. Distributed
tracing provides the answer for the cloud and
microservice architecture.

Debugging and observing distributed transactions in
a microservices implementation is harder without a
distributed tracing framework, as there are no in-
memory calls or stack traces to do so. Distributed
tracing, also called distributed request tracing, is a
method used to profile and monitor applications,
especially those built using a microservices

architecture. Distributed tracing helps identify where
failures occur and what causes poor performance.

Distributed tracing requires developers to explicitly
add instrumentation code into the application
to work. One business transaction might involve
multiple combinations of protocols and technologies.
While the distributed computing lends itself well to
the design goal of isolating failure, it adds significant
complexity to debug, trace and fix the failures.

“As Twitter has moved from a monolithic to a
distributed architecture, our scalability has
increased dramatically. Because of this, the overall
complexity of systems and their interactions has
also escalated. This decomposition has led to
Twitter managing hundreds of services across
our datacenters. Visibility into the health and
performance of our diverse service topology
has become an important driver for quickly
determining the root cause of issues, as well
as increasing Twitter’s overall reliability and
efficiency. Debugging a complex program might
involve instrumenting certain code paths or
running special utilities; similarly, Twitter needs
a way to perform this sort of debugging for its
distributed systems.”

Source: https://tinyurl.com/2p9fpp4f

S C A L I N G M I C R O S E R V I C E S

E X A M P L E O F A T R A C E

/orders

auth

Cache.Get

dB.Query

Cache.Put

https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 9

Testing Strategy

In a microservices-based architecture, many services
might be evolving independently at the same time,
and often rapidly. Done correctly, microservices
thus allow development teams to build and deploy
independently of one another, making it possible to
respond to business needs more quickly.

However, they must be independently releasable and
in an isolated way, meaning that the release is not
orchestrated between services.

While providing new levels of agility, this approach
raises another concern: can we verify that a new
service (or a new version of the service) does not
break anything in the current application?

In addition to the ability to trace requests, monitor
logs and checking the network configuration, such
as routing tables, network address translation (NAT)
and proxy settings, testing of different versions of
microservices that are deployed can be based on the
contract changes of the microservices.

T A P T E S T I N G I N B L U E / G R E E N O R C A N A R Y D E P L O Y M E N T S

Differencia

Comparison

Existing one in production (primary)

New version (canary)

MICROSERVICE V1

MICROSERVICE V2

“State”: “KY”{

“StateCode”: “KY”{ }

}

C O M PA R E S E RV I C E S I N P R O D U C T I O N (C A N A RY)

Often, these request tracing capabilities of a service
mesh are integrated with instrumentation libraries,
like OpenCensus or OpenTracing. Testing the services
requires the ability to tie together the entire trace,
which requires the application to propagate request-
specific tracking information in the headers between
services using the span. A span is each unit of work in
a trace, the different spans represent internal requests
that are made to process the top-level request for
“orders,” for example. The authorization check is
followed by the availability of the information in the
cache and a database query (in this event there is a
miss in the cache and must be reloaded).

Open instrumentation libraries, such as OpenTracing,
enable microservices to be instrumented using API
calls from within the application, helping testers
describe and analyze cross-process transactions.
These enable anomaly detection, help diagnose
steady state problems, and provide distributed
profiling, resource attribution and workload modeling
of microservices. When these implementations report
to backend systems, like Elasticsearch, visualization
of request traces using Kibana, or similar visualization
and exploration tools, provide contextual information
to diagnose issues within the system.

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 10

Testing Strategy

This type of testing is very useful in blue/green
deployment and can be applied to testing in
production. In fact, tap compare testing assesses
an environment without developing test scripts. It
requires an automated design to fetch production
requests. Then, it is ready to sample real production
requests by sending the fetched requests to a canary
or blue/green production environment, not servicing
production traffic.

Diferencia, an open source application, is one such
tool that can be used as shown above. Diferencia
acts as a proxy, with each request being multi-casted
to multiple versions of running services. When the
response from each of the services is returned, it
then compares the responses and checks if they
are “similar.” If after repeating this operation with a
representative amount of different requests, and all
(or most) of them are “similar,” then a new service can
be considered regression-free.

When using Kubernetes, a canary deployment can tap
the ingress controller configuration to assign specified

percentages of traffic requests to the stable and
canary deployments. Combined with a solution like
flagr, that supports dark launching, it can route traffic
upon inspection of the request packet to identify
which flag variant to apply for the request context.

Other tools like flagger (not to be confused with flagr)
provide additional capabilities around the closed
control-loop, that give dynamic routing capabilities
based on key performance measurements, such as
request success rate, request average duration and
health of the pods, posing further challenges.

Adapting the test strategy – based on the
implementation pattern and deployment
configuration – needs a test instrumentation set that
can validate the configurations and routing rules. The
adoption of a tester’s workbench, which models the
traffic patterns, usage and deployment configurations
to manage testing of roll-out flags in a distributed
architecture for system validation is essential, as the
traffic is now dynamic and policy-based.

A critical element for scaling out microservices is the adoption of an asynchronous

messaging queue to implement publish-and-subscribe semantics, such as Kafka,

in a distributed system architecture involving microservices.

A pattern that has found wide adoption is the
smart endpoints dumb pipes paradigm,1 in which
the message bus is responsible for delivering the
message, but the endpoint (API) must intelligently
interpret it. Typically, in reactive systems, events
are a record of what happens to an entity and
microservices push them into a durable storage, such

as an event log or event queue for other microservices
to consume. This then becomes the history that a
service can rely on to replay in order to recover like
a state machine. One challenge is accepting the fact
that when a state changes, it can take an inordinate
amount of time before entities see the change.

E V E N T - D R I V E N R E A C T I V E M I C R O S E R V I C E S

1 https://medium.com/@nathankpeck/microservice-principles-smart-endpoints-and-dumb-pipes-5691d410700f

https://lordofthejars.github.io/diferencia-docs-site/diferencia/0.6.0/index.html
https://flagger.app/
https://medium.com/@nathankpeck/microservice-principles-smart-endpoints-and-dumb-pipes-5691d410700f

Testing Strategy

The complexity of testing these architectures for resilience, fault-tolerance

and consistency increases with this implementation. Testing microservices

in these instances can leverage the loosely coupled services’ integration

approach by injecting messages that are pertinent (subscribed to) for the

microservice under test.

An interesting set of cases involves the way
exceptions are handled when a business logic
violation is encountered. Because of the distributed
and asynchronous nature of the microservices, a
set of compensatory transactions must be triggered
to revert the ongoing transaction that was being
processed but failed. A verification of the eventual
consistency of the transactional unit must be
confirmed via the query API of each microservices
chain involved in the transaction. This is particularly

important because a compensating transaction
doesn’t necessarily return the data in the system
to the state it was in at the start of the original
operation. Instead, it compensates for the work
performed by the steps that were completed
successfully before the operation failed. Validating
this requires visibility into the sequence of calls
through distributed tracing – and reconstruction of
the event logs for processing the application state –
before the transaction was initiated.

A P R I L 2 0 2 2 • 11W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures

A XO N P R O V I D E S T H E F O U N D AT I O N F O R B U I L D I N G A S Y N C H R O N O U S ,
M E S S A G E-D R I V E N S Y S T E M S B A S E D O N T H E C O N C E P T S O F:

In one use case, EPAM engineers used about 300 tests, which took about four to

five working days of effort to assess a microservice architected implementation.

Through the automation of event-layer orchestration and using mock producer

and consumer objects to test the microservices in isolation, the testing coverage

improved significantly.

This enabled contract-based testing of the microservices while reducing the testing effort to just a few hours.

The consumer-driven contract testing provided the higher coverage needed to increase confidence about the
development process. In this engagement, Axon, an open source microservices building framework, was used in
conjunction with Kafka event bus.

Caselet

EVENT_ID + TOPIC

+ MESSAGE
POJO CL ASS

Axon topic
(Mock Generator)

Publish
Event

Subscribe
Topic

MICROSERVICE

dB
KAFKA QUEUE

T E S T I N G M I C R O S E RV I C E S I N I S O L AT I O N

MICROSERVICES EV ENT S OURCIN G
COMMAND QUERY
RESPONSIBIL ITY

SEGREGATION (CQRS)

D OMA IN-D RIV EN
D ES IGN (D D D),
EV ENT-D RIV EN
A RC H IT ECT URE

A P R I L 2 0 2 2 • 12W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 13

Caselet

The framework uses an architecture that advocates the design and

development of applications by treating it as a “system of events,” rather

than as a “system of state.”

One of the benefits of CQRS, and especially that of
event sourcing, is that it is possible to express tests
for events and commands.

The fixtures provided by an Axon framework work
with any testing framework, such as JUnit or TestNG.
By using a fluent interface, optimal expression and
use of the stages of configuration, execution and
validation can be achieved using the “given-when-
then” construct.

Sagas can dispatch commands using a callback to be
notified of command processing results.

Often, sagas will interact with resources. These
resources are not part of the saga or its state but
are injected after a saga is loaded or created. The
Axon test fixtures use this capability to allow for the
registration of resources that need to be injected into
the saga. A useful approach is to inject mock objects,
using tools such as Mockito or EasyMock, into a saga.
Mock objects allow for verification that the saga
interacts correctly with external resources.

Command gateways provide sagas with an easier way
to dispatch commands. Using a custom command
gateway also makes it easier to create a mock or
stub to define its behavior in tests. However, when
providing a mock or stub, the actual command might
not be dispatched, making it impossible to verify

the sent commands in the test fixture. The fixture
was used to provide two methods that allow for the
registration of command gateways and, optionally, a
mock defining its behavior.

The test fixture also can timestamp events from the
moment the fixture was created because, by default,
the test fixture tries to eliminate elapsing system time,
where possible, to make predicting what time events
are scheduled for publication easier. If a test case
verifies that an event is scheduled for publication
in 30 seconds, it will remain 30 seconds, regardless
of the time taken between actual scheduling
and test execution. Finally, the Axon framework
provides capabilities to tune the performance for
Axon applications. This includes capabilities to take
event snapshots/segment tuning. We then use these
capabilities to customize the test strategy, one that
leverages the architectural patterns for efficiency,
speed and one that is fit-for-purpose.

https://microservices.io/patterns/data/saga.html

Continuous testing is an extremely important part of a cloud-native application

pipeline, as it helps to ensure the product is of an expected quality at every stage

of the pipeline. Our test workbench can accelerate instrumentation, orchestration

and testing of cloud-native microservices for availability and resiliency by

inducing network faults and pod disruptions, to provide clear actionable insights

and design considerations.

Continuously testing microservices entails engaging tasks and activities at each step in the development and
deployment cycle. The test workbench provides an ecosystem of tools to evaluate independent architectural
components for resiliency, elasticity, functional correctness and performance in isolation.

The platform can also provide monitoring and trace information using pre-configured tools, such as Prometheus,
Grafana and OpenTracing. The developer can also use the platform to shorten the feedback loop with real-time
insights for quick and early remediation. The advantage of a built-in, cloud-native test instrumentation is the
ability to automate test vectors that can be configured to process logs, trace requests and monitor containers
using best-fit tools directly at the source. This also addresses any data residency and privacy considerations.

Continuous Testing of Microservices with Our Test Workbench

INTEGRATES SEAMLESSLY WITH A DISTR IB UT ED
APPLICATION ARCHITECTURE TO INJECT, TRACE
AND REPORT ON DATA THROUGH THE DIF F E R E N T
PARTS OF THE SYSTEM.

PROVIDES ISOLATED SERVICES FOR TEST ING-
SPECIFIC CONTRACTS (FORMAT AND DATA
TYPES) FOR FUNCTIONAL VALIDATION.

T ESTS T H E RES IL IENCY OF T H E SYST EM BY
IN J E CTIN G FAU LT TO S IM U L ATE AVA IL A BI LI TY I SSUES;
DE TE CTS TOL E RA N CE TH R E S H OL DS A N D RECOVERY
TH R OU G H E V E N TUA L TRA N S ACTION A L CONSI ST ENCY.

LOC A L IZES AND ID ENT IF IES PERFORMAN CE
B OT T L ENEC KS A N D L ATE N CY ISS U E S CAUSED BY
DISTR IBU TE D A N D A SY M M E TR IC S CA L IN G OF PARTS
OF TH E SYSTE M .

1 3

2 4

O U R T E S T W O R K B E N C H E N H A N C E S T H E T E S T E F F O R T
V I A T H E F O L L O W I N G C A PA B I L I T I E S :

A P R I L 2 0 2 2 • 14W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures

W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures A P R I L 2 0 2 2 • 15

Conclusion

Testing cloud-native applications involving microservices require bespoke

solutions to address specific architectural patterns and implementations. To

quickly address the specific challenges posed by the implementation, testers

need to have the relevant skills, knowledge and cloud-native tools to help

facilitate the appropriate tests.

There are risks and challenges associated with cloud-native microservices architectures. The test workbench
seamlessly integrates with the various cloud providers to quickly configure the required tools, reducing the time to
design, test and validate business objectives. The cloud-native test strategy includes:

4UNDERSTANDING THE DOMAIN
DECOMPOSITION AND ASSOCIATED

BUSINESS WORKFLOWS.

A TESTER WORKBENCH THAT PROVIDES
OUT-OF-THE-BOX CAPABILITIES FOR

END-TO-END TEST MANAGEMENT.

ASSEMBLING THE RIGHT TOOLS TO INSTRUMENT
FOR OBSERVABILITY, TRACING, CONTRACTS

TESTING AND VALIDATION IN THE CLOUD.

1

3
B LUEPRINTS A ND S OLUT IONS TO ONB OAR D

A PPL IC AT ION PAY LOAD US ING D IV ERSE
C LOUD S ERV IC ES FOR VA L IDAT ION.

4

AUTOMAT ION REC IPES FOR ACC EL ERAT ED ,
MULTI-LAY ER T EST ING A ND A NA LYS IS OF

APPL IC AT ION ASS ESS MENT.

5

2

About The Authors

Venkat Moncompu, Director, Software Testing, EPAM, is passionate about software quality
engineering and is an agile evangelist. He has full software lifecycle experience, including product
development, customer experience, user experience design, software engineering and quality
management spanning 24 years. He is a frequent industry conference speaker and an avid follower of
disruptive trends, such as cloud and digital technologies.

venkataraman_moncompu@epam.com

Srikanth Mohan, Quality Architect, EPAM, is an Azure cloud solution architect with 18 years of
experience in cloud product validation. In previous roles, he has worked as a lead in presales and
solution development activity for quality assurance for evolving cloud products. He worked on various
digital transformation projects, IoT and connected devices initiatives, and the cloudification of products.
He has special interest in reliability and scalability of cloud applications. He has authored multiple
articles in open source forums and actively participates in community meetups.

srikanth_mohan@epam.com

A P R I L 2 0 2 2 • 16W H I T E P A P E R • Cloud-Native Microservices Testing: De-Risking Application Failures

mailto:venkataraman_moncompu%40epam.com%20?subject=
mailto:venkataraman_moncompu%40epam.com%20?subject=
mailto:venkataraman_moncompu%40epam.com%20?subject=
mailto:srikanth_mohan%40epam.com?subject=

A B O U T E P A M S Y S T E M S

G L O B A L
41 University Drive, Suite 202

Newtown, PA 18940, USA

P: +1-267-759-9000

F: +1-267-759-8989

Since 1993, EPAM Systems, Inc. (NYSE: EPAM) has leveraged its software engineering expertise to become a leading
global product development, digital platform engineering, and top digital and product design agency. Through its
‘Engineering DNA’ and innovative strategy, consulting, and design capabilities, EPAM works in collaboration with its
customers to deliver next-gen solutions that turn complex business challenges into real business outcomes. EPAM’s
global teams serve customers in over 25 countries across North America, Europe, Asia and Australia. EPAM is a
recognized market leader in multiple categories among top global independent research agencies and was one of only
four technology companies to appear on Forbes 25 Fastest Growing Public Tech Companies list every year of publication
since 2013. Learn more at https://www.epam.com/ and follow us on Twitter @EPAMSYSTEMS and LinkedIn.

© 1993-2022 EPAM. All Rights Reserved.

C O N T A C T U S

https://www.epam.com
https://twitter.com/EPAMSYSTEMS
https://www.linkedin.com/company/epam-systems/
https://www.instagram.com/epamsystems/
https://www.facebook.com/EPAM.Global
https://www.linkedin.com/company/epam-systems/
https://twitter.com/EPAMSYSTEMS
https://www.youtube.com/c/EPAMSystemsGlobal

